Volume of Rectangular Prisms – Explanation & Examples (2024)

Volume of Rectangular Prisms – Explanation & Examples (1)The volume of a rectangular prism is the measure of the space the fills it. In this article, you will learn how to find a rectangular prism volume by using the volume of a rectangular prism formula. We will also discuss the volume of a spherical cylinder.

How to Find the Volume of a Rectangular Prism?

A rectangularprism is a 3-dimensional object with six rectangular faces. A rectangular prism is also referred to as a cuboid, rectangular hexahedron, right rectangular prism, or a rectangular parallelepiped.

Volume of Rectangular Prisms – Explanation & Examples (2)

To find the volume of a rectangular prism, multiply the length, width, and height. The unit for measuring the volume of a rectangular prism is cubic units, i.e., cm3, mm3, in3, m3, etc.

Volume of a Rectangular Prism Formula

The formula for the volume of a rectangular prism is given as:

Volume of a rectangular prism = (length x width x height) cubic units.

V = (l x w x h) cubic units

In a rectangular prism, the product of the length and the width is known as the base area. Therefore, we can also represent the volume of a rectangular prism formula as:

Volume of a rectangular prism = Base area x height

Let’s try the formula by working out a few example problems.

Example 1

The length, width, and height of a rectangular prism are 15 cm, 10 cm, and 5 cm, respectively. What is the volume of the prism?

Solution

Given, length = 15 cm,

width = 10 cm,

height = 5 cm.

By the volume of a rectangular prism, we have

Volume = l x w x h

= (15 x 10 x 5) cm3

= 750 cm3.

Example 2

The volume of a rectangular prism is 192 cm3. If the prism’s length is twice the height and width of 6 cm, find the dimensions of the rectangular prism.

Solution

Given,

Let the height be x.

Length = 2x

Width = 6 cm.

Volume = 192.

By volume of a rectangular prism,

⇒ 192 = x(2x) (6)

⇒ 192 = 12x2

On dividing both sides by 12, we get

⇒ 16 = x2

⇒ x = 4, -4

Substitute

Length = 2x ⇒ 2x 4 =8 cm

Height = x ⇒ 4 cm

Therefore, the dimensions of the rectangular prism are 8cm, 6cm, and 4 cm.

Example 3

The length and width of a rectangular aquarium are 800 mm and 350 mm. When fish is introduced in the aquarium, the water level rises by 150 mm. Find the volume of the fish.

Solution

The volume of the fish = the volume of the water displaced.

Volume of the fish = 800 x 350 x 150 mm3

= 4.2 x 107 mm3

Example 4

A rectangular water tank is 80 m long, 50 m wide, and 60 m in height. If the water’s depth in the tank is 45 m, find the volume of water required to fill the tank?

Solution

To find the water volume needed to fill the tank, subtract the available water volume from the volume of water when the tank is full.

Volume of water, when the tank is full = 80 x 50 x 60

= 240,000 m3

Volume of the water available = 80 x 50 x 45

= 180,000 m3

Volume of the water required = (240,000 – 180,000) m3

= 60,000 m3

Example 5

The volume and base area of a rectangular cargo container is 778 m3 and 120 m2. Find the height of the container?

Solution

Volume of a rectangular prism = base area x height

778 = 120 x height

Divide 120 on both sides.

778/120 = height

height = 6.48 m

So, the height of the container is 6.48 m.

Example 6

Small boxes of dimension 1 m x 4 m x 5 m are to be packed in a larger rectangular container of dimension 8 m x 10 m x 5 m. Find the maximum number of small boxes that can be packed in the container?

Solution

To find the number of boxes to be packed, divide the container’s volume by the volume of the box.

Volume of the container = 8 x 10 x 5

= 400 m3.

Volume of box = 1 x 4 x 5

= 20 m3

Number of boxes = 400 m3/20 m3.

= 20 boxes.

Example 7

The external dimensions of a wooden box which is open at the top is given as 12 cm long, 10 cm wide and by 5 cm height. If the walls of the box are 1 cm thick, find the volume of the box

Solution

Find the internal dimensions of the box

Length = 12 – (1 x 2)

= 10 cm

Width = 10 – (1 x 2)

= 8 cm

Height = 5 cm – 1 …… (open at the top)

= 4 cm

Volume = 10 x 8 x 4

= 320 cm3.

Example 8

What are the dimensions of a cube with the same volume as a rectangular prism with the dimensions as 8 m by 6 m by 3 m?

Solution

Volume of a rectangular prism = 8 x 6 x 3

= 144 cm3

So, a cube will also have a volume of 144 cm3

Since we know that the volume of a cube = a3

where a is the length of a cube.

144 = a3

3√ a3 = 3√144

a = 5.24

Therefore, the dimensions of the cube will be 5.24 cm by 5.24 cm by 5.24 cm.

Example 9

Calculate the volume of a solid rectangular prism whose base area is 18 in2 and height is 4 in.

Solution

Volume of a rectangular prism = length x width x height

= base area x height

V= 18 x 4

= 72 in3.

Example 10

Find the base area of a rectangular prism whose volume is 625 cm3 and height is 18 cm.

Solution

Volume = base area x height

625 = base area x 18

By dividing both sides by 18, we get

Base area = 34.72 cm2

Volume of Rectangular Prisms – Explanation & Examples (2024)

FAQs

How do you explain the volume of a rectangular prism? ›

The volume of a rectangular prism is the product of its three dimensions, that is volume = length × width × height. If its length, width, and height is doubled, then its volume will be (2l) × (2w) × (2h) = 8lwh = 8 × v.

What is the volume of the rectangular prism question? ›

What is the volume of a rectangular prism formula? Volume of a rectangular prism is the area of the base (length times width) times the height of the rectangular prism or l × w × h l \times w \times h l×w×h.

How do you solve problems about volume of right rectangular prisms? ›

The volume of a right rectangular prism is calculated by applying this formula: Volume of a right rectangular prism = (length × width × height) cubic units. What are some real-world examples of a right rectangular prism?

What is an example of a rectangular prism? ›

Some real-life examples of rectangular prisms are shoeboxes, books, refrigerators, and televisions. These objects have a box-like shape with rectangular sides.

How to calculate volume of prism? ›

The volume of a prism is the product of the area of the base and the height of the prism. Prism volume (V) = B × h, where, B is the area of the base and h is the height of the prism.

How to calculate volume of rectangle? ›

You can calculate the volume of a rectangle by volume= length × width × height. It is an equation that is used to calculate the volume of a rectangle.

How to figure out volume? ›

In math, volume is the amount of space in a certain 3D object. For instance, a fish tank has 3 feet in length, 1 foot in width and two feet in height. To find the volume, you multiply length times width times height, which is 3x1x2, which equals six. So the volume of the fish tank is 6 cubic feet.

How to find the base of a rectangular prism? ›

Since this is a rectangular prism, substitute the area formula of a rectangle for B. The base of the prism is equal to lw, which is the length times the width.

How do you explain volume in math? ›

In mathematics, 'Volume' is a mathematical quantity that shows the amount of three-dimensional space occupied by an object or a closed surface. The unit of volume is in cubic units such as m3, cm3, in3 etc. Sometimes, volume is also termed capacity.

How do you find the volume of a cube and rectangular prism? ›

The formula for volume of rectangular prism is given by, Volume = length x width x height. The formula for volume of a cube is given by, Volume = side x side x side. Make sure that in both the caes, the unit of measuremet are the same.

What are three ways to find the volume of a rectangular prism? ›

Multiply the length, the width, and the height.

The formula for finding the volume of a rectangular prism is the following: Volume = Length * Height * Width, or V = L * H * W.

References

Top Articles
Latest Posts
Article information

Author: Margart Wisoky

Last Updated:

Views: 5746

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Margart Wisoky

Birthday: 1993-05-13

Address: 2113 Abernathy Knoll, New Tamerafurt, CT 66893-2169

Phone: +25815234346805

Job: Central Developer

Hobby: Machining, Pottery, Rafting, Cosplaying, Jogging, Taekwondo, Scouting

Introduction: My name is Margart Wisoky, I am a gorgeous, shiny, successful, beautiful, adventurous, excited, pleasant person who loves writing and wants to share my knowledge and understanding with you.